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This supplementary material provides additional details of our pro-
posed method, including model details in Section A, and experiment
setups in Section B. Moreover, we present additional experimental
results and analysis in Section C. Dynamic qualitative results can
be viewed in our supplementary video.

A MODEL DETAILS
We elaborate on the detailed architecture of our unified neural field
as introduced in Sec. 3.1. The unified neural field is a fully-connected
neural network and consists of five parts, F𝑔𝑒𝑜 , F𝜎 , F𝑐 , F𝑛 , F𝑚 . F𝑔𝑒𝑜
has 8 layers with 256 hidden dimensions and ReLU activation. F𝑔𝑒𝑜
uses positional encoding [8] with 10 frequencies on spatial location
input x, and outputs geometry feature 𝑓𝑔𝑒𝑜 with a dimension of
256. F𝜎 is a volume density head MLP with 1 layer which takes
𝑓𝑔𝑒𝑜 as input and outputs volume density 𝜎̂ . F𝑐 is a radiance head
MLP with 2 layers and 128 hidden dimensions which takes 𝑓𝑔𝑒𝑜 and
positional encoded view direction d (with 4 frequencies) as input
and outputs the RGB radiance 𝑐 . F𝑛 is a normal head MLP with 2
layers and 128 hidden dimensions which takes 𝑓𝑔𝑒𝑜 as input and
outputs the smooth surface normal 𝑛̂. F𝑚 is a reflection probability
head MLP with 2 layers and 128 hidden dimensions, which takes
𝑓𝑔𝑒𝑜 as input and outputs the reflection probability 𝑚̂ normalized by
the Sigmoid activation. During rendering, we take the hierarchical
sampling with a coarse neural field and a fine neural field. We first
uniformly sample 64 coarse points and then sample 128 fine points
by importance sampling along each ray.

B EXPERIMENT SETUPS
B.1 Data Preparation
We evaluate Mirror-NeRF on synthetic and real datasets. Synthetic
datasets contain five synthetic indoor rooms downloaded from
BlenderSwap [4]. Images are captured 360 degrees around the scene
with a horizontal circular camera trajectory located at the center of
the room and looking towards the center, which is established by
utilizing the Bezier curve. We use the Cycle engine in Blender to
render high-fidelity images with a resolution of 400x400. For real

∗Junyi Zeng and Chong Bao contributed equally to this research. The authors from
Zhejiang University are also affiliated with the State Key Lab of CAD&CG.
†Corresponding author: Zhaopeng Cui.

(a) Full Model

(c) w/o Progressive 

Training Strategy

(b) w/o Regularization

(d) w/o Full Mirror Masks 

(30% Given)

Figure A: More ablation studies. In each subplot, the image
on the left is the novel view and the images on the right
are depth, surface normal, and reflection mask from top to
bottom respectively.

datasets, we use 3D Scanner App [1] in IPad Pro 5th generation
to capture images and camera poses in the clothing store, lounge,
market and discussion room. The images are taken along a hori-
zontal round trajectory in front of the mirror, with 480x360 pixels
per image.

B.2 Comparison Details
All experiments are performed on NVIDIA RTX 3090 GPU (24GB).
The scene coordinates are scaled to be within [-1,1]. We train Ref-
NeRF [9] with the default setting, except for tuning the far bound
of ray sampling for different scenes to avoid the result collapsing
and reducing the batch size to 2048 to avoid the "out of memory"
error in a single GPU with decreasing the learning rate by the scale
factor that batch size is reduced by. NeRFReN [2] uses two radiance
fields to learn the reflected part and transmitted part of the scene
separately. In cases where geometric constraints are not dominant,
NeRFReN is easy to get stuck in a local optimum by exclusively
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Figure B: Qualitative comparison of estimated surface normal maps on synthetic scenes with mirrors.
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Figure C: Qualitative comparison of novel view synthesis from challenging novel viewpoints out of the training set distribution
on the real-world discussion room.

utilizing the radiance field of a single part to learn the entire scene
while leaving the other part degenerate. Thus, we manually tune
its weighting coefficients of mask loss and depth smoothness loss
in each dataset which ranges in [1.0, 5.0].

Instead, our method takes a progressive training strategy in
Sec. 3.4 to stabilize the geometry optimization of the mirror. Specif-
ically, In the initial stage of training, we enable 𝜆𝑐 with L𝑐𝑚 and
disable the other weight factors. After 2 epochs, we enable geome-
try constraints 𝜆𝑛 , 𝜆𝑛𝑟𝑒𝑔 , 𝜆𝑚 , 𝜆𝑝𝑐 . In the 5th epoch, we replace L𝑐𝑚

with L𝑐 until the end of training.
When comparing reflection in the mirror from the novel view-

points out of the training set distribution in Tab. 2, we capture
scenes from a group of challenging test camera poses. These view-
points are closer to the mirror than training viewpoints and can
see the reflection in the mirror that is unobserved from the training
viewpoints. For synthetic scenes, we use the Cycle engine to render
the images and the mirror reflection masks from the test viewpoints
in Blender. To assess the PSNR of the reflection synthesized by each
method, we use the ground-truth mirror reflection mask to filter the
pixels outside the mirror and only evaluate PSNR for pixels inside
the mirror. Since evaluating SSIM [10] and LPIPS [11] requires a

complete 2D image, we use ground-truth mirror reflection mask to
zero out the pixels outside the mirror for both rendered images and
ground-truth images before evaluating their SSIM and LPIPS.

C MORE EXPERIMENTS
C.1 Ablation Study on Regularization
To ablate the naïve training without regularization, we turn off all
regularization terms 𝜆𝑝𝑐 , 𝜆𝑛𝑟𝑒𝑔 , and joint optimization described
in Sec. 3.3. As demonstrated in Tab. A and Fig. A(b), the geometry
of the mirror is broken due to the underconstrained density field.
The "foggy" geometry of the mirror prevents us from synthesizing
the precise color and reflection probability of the mirror. Instead,
with the proposed regularization, we can obtain the smooth depth
and normal of the mirror to improve the rendering quality of the
reflection.

C.2 Ablation Study on Progressive Training
Strategy

When ablating the progressive training strategy described in Sec. 3.4,
we train the whole model by enabling all weight factors in Eq. (16)
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Settings PSNR ↑ SSIM ↑ LPIPS ↓
w/o Regularization 25.588 0.812 0.182
w/o Progressive Training Strategy 18.523 0.569 0.585
w/o Full Mirror Masks (30% Given) 32.305 0.927 0.052
Full Model 32.422 0.933 0.047

Table A: More ablation studies on the synthetic bedroom.

Methods MAE◦ ↓
NeRF 38.555
Ref-NeRF 31.930
Ref-NeRF (predict) 31.778
NeRFReN 22.717
Ours 8.387
Ours (predict) 7.422

Table B: Quantitative comparison of mean angular error
(MAE) on five synthetic scenes with mirrors. Here "predict"
denotes that the predicted normal from MLP is used in the
comparison, otherwise we use analytical surface normal
from volume density to compute mean angle error. The best
is marked in red and the second best is marked in orange.

from scratch without using the masked photometric loss L𝑐𝑚 . As
shown in Tab. A and Fig. A(c), the color, depth, normal and reflec-
tion probability degenerate due to the conflict between the color
supervision of the mirror and the geometry regularization in the
early stage of training. When the geometry of the mirror has not
converged yet, the color supervision and the geometry regulariza-
tion confuse the optimization direction of training, i.e., to learn
a virtual scene in the mirror or to learn a planar surface at the
mirror. With the progressive training strategy, we can easily avoid
the degeneration situation by first learning the geometry of the
mirror and then modeling the reflection in the mirror.

C.3 Ablation Study on Mirror Reflection Masks
We support training with some mirror reflection masks not given,
while the quality has no significant degradation. To analyze the
impact of training with the partial mirror reflection masks, we
segment out the mirror in 30% of the images with the off-the-shelf
segmentation tool [3] to obtain the mirror reflection masks. In
the first two stages of training, the model is supervised by the
images with the reflection masks to learn the accurate geometry
and reflection probability of the mirror. In the last stage, all images
are used to supervise the joint optimization of the color inside and
outside the mirror. As demonstrated in Tab. A and Fig. A(d), we can
still synthesize high-fidelity reflection in the mirror with partial
reflection masks, and the rendering quality is comparable with
the results from full(100%) reflection masks. This demonstrates the
robustness of our method.

C.4 Comparison of the Surface Normal
We compare the estimated surface normal of our method with
NeRF [5], Ref-NeRF [9], NeRFReN [2] on five synthetic datasets, as
shown in Fig.B. The ground-truth surface normal maps of novel

views are rendered by Blender. We use the mean angular error
(MAE) to quantitatively compare the volume-rendered analytical
surface normal N with the ground truth.

N(𝒓) =
𝑀∑︁
𝑖=1

𝑇𝑖𝛼𝑖n𝑖 , (1)

where n is derived from Eq. (3). Since Ref-NeRF and our method
also predict the smooth surface normal n̂ which is parameterized
by an MLP, we also compare the volume-rendered predicted sur-
face normal N̂ in Eq. (6) with the ground truth. The quantitative
results are shown in Tab. B. Both the predicted surface normal and
the analytical surface normal of our method outperform all the
compared methods, which reveals the superiority of our method in
learning the geometry of the scene with the mirror. Here MAE of
our predicted surface normal is smaller than that of the analytical
surface normal, which demonstrates the effectiveness of our smooth
surface normal parameterization. The qualitative comparisons are
shown in Fig. B. We can produce a smoother surface normal than
all the compared methods, which is closer to the ground truth.

C.5 Analysis on Training and Rendering
Efficiency

To evaluate the training and rendering efficiency, we conduct quan-
titative comparisons between NeRF and our method with the same
setting on the "office" dataset. The batch size is 1024 and the chunk
size is 8192.

The training time for NeRF with 20 epochs is 8.012 hours, while
our method takes 28.539 hours. Our additional computations com-
pared to NeRF during training are mainly caused by training neural
networks of normal and reflection probability fields, computing
regularization loss terms, ray tracing, and some calculations like
computing the gradient of volume density.

As for rendering efficiency, NeRF takes 5.878s and our method
takes 8.386s on average to render a 400x400 image of the "office"
dataset. Our additional computations compared to NeRF are mainly
caused by tracing the reflected rays from the mirror-like surface
and extra networks to predict the normal and reflection probability
of sampled points. Benefiting from the efficient formulation of
Whitted Ray Tracing, only rays hitting mirror-like surfaces are
traced with one reflected ray for each, and most rays terminate at
diffuse surfaces quickly. The latest acceleration approaches [6, 7]
can be also exploited to accelerate both the training and rendering
efficiency of our method, which is considered as future work.

C.6 Handling Multi-Time Reflections
As demonstrated in Eq. (11), our method can handle multi-time
reflections by recursive tracing. We have verified this ability to
learn multi-time reflections on a new scene with multiple mirrors.
The quantitative result is 31.891 on PSNR(↑), 0.883 on SSIM(↑),
0.083 on LPIPS(↓). The qualitative result is shown in Fig. D. Due
to the accumulated drift error of multi-time reflections and lack of
plane consistency constraint, there is a slight imperfection in the
part of the mirror with multi-time reflections. Besides, the result
of rendering multi-time reflections is shown in the application of
placing new mirrors in Fig. 7(a).
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Figure D: Our method can handle multi-time reflections by
recursive tracing.

C.7 More Analysis on Real-World Datasets
From Tab. 1 in the main paper, we can see that our method is slightly
inferior to NeRF [5] on real-world datasets. This is mainly due to
the following two reasons.

First, the camera poses computed for the real-world datasets are
not very precise, which makes the geometry slightly inconsistent
in multiple views. NeRF can tolerate the view-dependent geometry
inconsistency due to the "foggy" density field. However, our method
tries to learn an accurate surface of the mirror for ray tracing. The
geometry inconsistency will bias the direction of the reflected ray
and incur a decrease in quality. The error of camera poses is mainly
caused by the mirror since the non-Lambertian surface causes most
general reconstruction algorithms to fail. The 3D Scanner App we
used to capture images and camera poses also suffers from this
problem. In future work, we will incorporate the joint optimization
of camera poses with the neural radiance field to overcome this
limitation. To be noted, for the synthetic datasets with accurate
camera poses, our method achieves superior results.

Second, we find that in the test sets of real-world datasets shown
in Tab. 1, the new reflection only accounts for 0.56% of the test
image area on average. This means that NeRF can easily interpolate
the reflection memoized from training views to reach high render-
ing qualities. To compare the correctness of modeling reflection, we

captured some challenging test views whose viewpoints are out of
the distribution of the training viewpoints. The average proportion
of new reflection reaches 5.53% in a test image. On the challeng-
ing test views, our method outperforms NeRF and other works as
shown in Tab. 2. For intuitive perception, we show the qualitative
comparison of novel view synthesis on the challenging test view
of the discussion room as an example in Fig. C. Our method syn-
thesizes realistic reflections in the mirror while the results of NeRF
and other works are corrupted on the challenging novel views.

Besides, to be noted, NeRF does not reconstruct the physically
sound geometry of the mirror, while our method can recover the
accurate geometry of the mirror. Moreover, our physically-inspired
rendering pipeline enables synthesizing reflections unobserved in
training views, and supports various applications which previous
NeRF-related works cannot do.
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